

Energy Systems Integration

Dr. Bryan Hannegan Associate Laboratory Director

January 2014

Future Energy Systems are Emerging ...

Deployment and Cost for U.S. Land-Based Wind 1980-2012

Deployment and Cost for A-Type LED Lights 2008-2012

U.S. Deployment and Cost for Solar PV Modules 2008-2012

Deployment and Cost for Electric Vehicles and Batteries* 2008-2012

Grid Integration Issues

- High wind and solar means lesser but more variable use of other assets
- High efficiency, demand response, and new loads are changing demand and making it more variable
- Existing T&D grid increasingly strained by two-way power flow
- Need *flexibility* in system operations to absorb growing variability

New Approach \rightarrow **Energy Systems Integration**

Energy system integration (ESI) = the process of optimizing energy systems across multiple pathways and scales

ESI RD&D Activities To Date

Solar and Wind

- High Penetration PV integration
- Wind integration with transmission operations

Grid Planning and Operations

- Transmission and Distribution Systems
- Smart Grid Technologies
- Microgrids
- Standards

Energy Storage

- CSP Thermal Storage
- Utility scale batteries
- Distributed storage

Buildings

- Sensors and controls
- Design and integration
- Modeling and simulation
- System integration

Hydrogen and Fuel Cells

- H₂/electric interfaces
- RE electrolyzers
- Storage systems
- Fuel cell integration
- H2/Grid integration

Advanced Vehicles

- Plug-in-hybrids and vehicle-togrid integration
- Battery thermal management
- Power electronics

Focus on single devices and small-scale field demos

ESI Goal 1: Integrate Technologies Into System

Characterize and predict how components and devices will interact with the others in the system

ESI Goal 2: Integrate Across Functional Layers

ESI Goal 3: Integrate Across Physical Scales

Apply this framework to the optimization of existing and future energy systems at a variety of scales

Energy Systems Integration Facility (ESIF)

- NREL's largest R&D facility (182,500 ft²/20,000 m²)
- Space for 200 NREL staff and research partners
- 15 state-of-the-art hardware laboratories
- Integrated megawattscale electrical, thermal and fuel infrastructure
- High performance computation and data analysis capabilities
- 2-D/3-D advanced visualization

http://www.nrel.gov/esi/esif.html

ESIF Integrated Laboratories

ESIF Hardware-in-the-Loop Capability

ESIF Linkage to Other Facilities

^{*}Permanent storage facility concept is under evaluation

Enables joint experiments involving both transmission and distribution system elements

A National Network for ESI

ESIF is a key node in the emerging network for ESI research, development, demonstration and analysis

An Opportunity for Leadership

Energy Systems Integration

Accelerating the Clean Energy Future